An Efficient Global K-means Clustering Algorithm

نویسندگان

  • Juanying Xie
  • Shuai Jiang
  • Weixin Xie
  • Xinbo Gao
چکیده

K-means clustering is a popular clustering algorithm based on the partition of data. However, K-means clustering algorithm suffers from some shortcomings, such as its requiring a user to give out the number of clusters at first, and its sensitiveness to initial conditions, and its being easily trapped into a local solution et cetera. The global Kmeans algorithm proposed by Likas et al is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) runs of the K-means algorithm from suitable initial positions. It avoids the depending on any initial conditions or parameters, and considerably outperforms the K-means algorithms, but it has a heavy computational load. In this paper, we propose a new version of the global K-means algorithm. That is an efficient global K-means clustering algorithm. The outstanding feature of our algorithm is its superiority in execution time. It takes less run time than that of the available global K-means algorithms do. In this algorithm we modified the way of finding the optimal initial center of the next new cluster by defining a new function as the criterion to select the optimal candidate center for the next new cluster. Our idea grew under enlightened by Park and Jun’s idea of K-medoids clustering algorithm. We chose the best candidate initial center for the next cluster by calculating the value of our new function which uses the information of the natural distribution of data, so that the optimal initial center we chose is the point which is not only with the highest density, but also apart from the available cluster centers. Experiments on fourteen well-known data sets from UCI machine learning repository show that our new algorithm can significantly reduce the computational time without affecting the performance of the global Kmeans algorithms. Further experiments demonstrate that our improved global K-means algorithm outperforms the global K-means algorithm greatly and is suitable for clustering large data sets. Experiments on colon cancer tissue data set revealed that our new global K-means algorithm can efficiently deal with gene expression data with high dimensions. And experiment results on synthetic data sets with different proportions noisy data points prove that our global k-means can avoid the influence of noisy data on clustering results efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...

متن کامل

GROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION

Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...

متن کامل

A Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)

Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011